FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells
نویسندگان
چکیده
Chemoresistance to anti-cancer drugs substantially reduces survival in epithelial ovarian cancer. In this study, we showed that chemoresistance to cisplatin and paclitaxel induced the epithelial-mesenchymal transition (EMT) and a stem cell phenotype in ovarian cancer cells. Chemoresistance was associated with the downregulation of epithelial markers and the upregulation of mesenchymal markers, EMT-related transcription factors, and cancer stem cell markers, which enhanced invasion and sphere formation ability. Overexpression of FOXM1 increased cisplatin-resistance and sphere formation in cisplatin-sensitive and low FOXM1-expressing ovarian cancer cells. Conversely, depletion of FOXM1 via RNA interference reduced cisplatin resistance and sphere formation in cisplatin-resistant and high FOXM1-expressing cells. Overexpression of FOXM1 also increased the expression, nuclear accumulation, and activity of β-CATENIN in chemoresistant cells, whereas downregulation of FOXM1 suppressed these events. The combination of cisplatin and the FOXM1 inhibitor thiostrepton inhibited the expression of stem cell markers in chemoresistant cells and subcutaneous ovarian tumor growth in mouse xenografts. In an analysis of 106 ovarian cancer patients, high FOXM1 levels in tumors were associated with cancer progression and short progression-free intervals. Collectively, our findings highlight the importance of FOXM1 in chemoresistance and suggest that FOXM1 inhibitors may be useful for treatment of ovarian cancer.
منابع مشابه
The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell
Chemotherapy is one of the main approach for ovarian cancer. Cancer stem cells (CSCs) escape chemotherapy and lead to chemoresistance. We previously demonstrated that cordycepin (Cd) inhibited metastasis in human ovarian carcinoma cells, the aim of this study is to investigate the effects of Cd on ovarian cancer stemness. TGF-beta was used to induce chemoresistance of chemotherapeutic agent cis...
متن کاملTumor Protein p63/microRNA Network in Epithelial Cancer Cells
Non-coding microRNAs are involved in multiple regulatory mechanisms underlying response of cancer cells to stress leading to apoptosis, cell cycle arrest and autophagy. Many molecular layers are implicated in such cellular response including epigenetic regulation of transcription, RNA processing, metabolism, signaling. The molecular interrelationship between tumor protein (TP)-p53 family member...
متن کاملTargeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer
Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal tr...
متن کاملStemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress
One of greatest challenges to the successful treatment of cancer is drug resistance. An exciting approach is the eradication of cancer stem cells (CSCs). However, little is known about key signals regulating the formation and expansion of CSCs. Moreover, lack of a reliable predictive preclinical model has been a major obstacle to discover new cancer drugs and predict their clinical activity. He...
متن کاملA FOXM1 Dependent Mesenchymal-Epithelial Transition in Retinal Pigment Epithelium Cells
The integrity of the epithelium is maintained by a complex but regulated interplay of processes that allow conversion of a proliferative state into a stably differentiated state. In this study, using human embryonic stem cell (hESC) derived Retinal Pigment Epithelium (RPE) cells as a model; we have investigated the molecular mechanisms that affect attainment of the epithelial phenotype. We demo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015